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We report the investigation of magnetotransport properties of tight-binding electrons with Rashba spin-orbit
coupling �SOC�. Four-step evolutions of the spin Hall and charge-Hall conductances �SHC and CHC� have
been found when fixing the magnetic field and tuning the Rashba SOC: the SHC shows size-dependent
resonant jumps and even changes its sign; the CHC exhibits three successive quantum jumps. More arrestingly,
such four-step evolutions are reflected in topological characters of edge states of a cylindrical system and are
robust against weak disorder.
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I. INTRODUCTION

Recently, the spin Hall effect �SHE�, i.e., a generation of
spin current perpendicular to an applied electric field,1–4 has
shed light on spintronics5 and provided techniques to ma-
nipulate spins in nanostructures. In contrast to the extrinsic
SHE driven by spin-orbit �SO� impurity scattering,1 it is pro-
posed that an intrinsic SHE exists in semiconductors with SO
coupled bands.2,3 These proposals encouraged the discovery
of the SHE in GaAs semiconductor films and
heterostructures4 and in metallic Al films and Pt strips.6 In
models with SO coupled bands, two-dimensional electron
gas �2DEG� with Rashba spin-orbit coupling �SOC� �Ref. 7�
has the simplest form and is therefore most notable.3,8–11

Meanwhile, tunable Rashba SOC has been achieved via an
external gate voltage on the top of asymmetric
heterostructures,12 and the Rashba SO field in quantum wells
and semiconductors can also be measured optically.13

In a clean 2DEG with parabolic dispersion and linear
Rashba SOC, Sinova et al.3 predicted that the spin Hall con-
ductance �SHC� holds a universal value independent of SOC
strength when both SO split bands are occupied. It is now
known that such an intrinsic SHC with only linear Rashba
SOC might be destroyed by any amount of disorder10 or be
canceled completely by intrabranch contributions in the pres-
ence of a magnetic flux.8 In parallel, the SHC of 2DEG with
linear Rashba SOC and Zeeman splitting in a magnetic field
was calculated, and a resonant SHE was predicted when two
Landau levels cross each other at the Fermi level.11 In the
presence of an underlying lattice potential, e.g., in metallic
conductors such as Al films and Pt strips,6 both parabolic
dispersion and linear SOC should be modified and then in-
corporated into a lattice model which has been employed to
study the effect of disorder on the SHE in the metallic
regime.9

Here, we report the investigation of magnetotransport
properties of tight-binding electrons �TBEs� with Rashba
SOC. This model is also relevant to experimental systems
such as ultracold fermions in an optical lattice with an effec-
tive SOC �Ref. 14� and graphene with an intrinsic or Rashba

SOC.15,16 Surprisingly, we have found that tuning the Rashba
SOC strength generates four-step evolutions of the SHC and
the charge-Hall conductance �CHC�. Such bulk properties
are also reflected in topological characters and spin polariza-
tions of edge states of a cylindrical system and are robust
against weak disorder.

II. FORMULATION

The model Hamiltonian of two-dimensional �2D� TBE on
a square lattice with Rashba SOC and a uniform perpendicu-

lar magnetic field B� = �0,0 ,−B� is9

H = − t�
�ij�

�ei�ijĉi
†ĉj + H.c.� + ��

i

�iei�i,i+y�ĉi
†�xĉi+y�

− iei�i,i+x�ĉi
†�yĉi+x� + H.c.� − hZ�

i

�ni↑ − ni↓� , �1�

where ĉi
†= �ci↑

† ,ci↓
† � are electron creation operators at site i, �x

and �y are Pauli matrices, the nearest-neighbor hopping in-
tegral t will be taken as the unit of energy, � is the
Rashba SOC strength, and the Zeeman splitting parameter is
hZ= 1

2g�BB, with g as the Landé factor and �B as the Bohr
magneton. We mainly consider 1 /N magnetic-flux quantum
per plaquette �N an integer�, namely, �=���ij =2�Ba2 /�0
=2� /N, with a as the lattice constant and �0=hc /e as the

flux quantum. The Landau gauge A� = �0,−Bx ,0� and the cor-
responding periodical boundary conditions �PBCs� are
adopted, and the magnetic unit cell has the size N�1.

After the numerical diagonalization of the Hamiltonian
�Eq. �1��, the zero-temperature �T=0� CHC is calculated
through the Kubo formula,17

�CH�E� =
ie2�

A
�

	mk
E
�

	nk�E

�
�mk�vx�nk��nk�vy�mk� − �mk�vy�nk��nk�vx�mk�

�	mk − 	nk�2 ,

�2�

while the SHC at T=0 is given by3
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�SH�E� = −
e�

A
�

	mk
E
�

	nk�E

Im�mk�Jx
z spin�nk��nk�vy�mk�
�	mk − 	nk�2 ,

�3�

where A=L�L is the area of this 2D system, E is the Fermi
energy, 	mk is the corresponding eigenvalue of the eigenstate
�mk� of mth Landau subband, and the summation over wave
vector k is restricted to the magnetic Brillouin zone �MBZ�:
−� /N�kxa
� /N and −��kya
�. The velocity operator
is defined as v= i /��H ,R� �R is the position operator of elec-
tron� and the spin current operator as Jx

z spin=� /4	vx ,�z
.
When E falls in energy gaps, we can rewrite �CH as
�CH�E�=e2 /h�	m
ECm, where Cm is the Chern number17 of
the mth totally filled Landau subband.

III. EXAMPLE WITH N=4

An overall pictures of the CHC �CH and the SHC �SH
calculated in Eqs. �2� and �3� are shown in Fig. 1 with N
=4 �i.e., the flux strength �= 1

4 �2��, hZ=0.4t, and various
lattice sizes with L=32−2048. We concentrate on the lowest
Landau subbands and consider the electron filling 
= 1

8 .
In the case of �=0 �Fig. 1�c��, the density of states �DOS�

is symmetric about the Fermi energy E, and the lowest two
Landau subbands �each totally filled subband contributes 1

8 to

� are well separated due to a sufficiently large Zeeman split-
ting �hZ=0.4t�; the lowest subband is occupied by spin-up
electrons, while the second lowest one by spin-down elec-
trons, and each subband carries a Chern number +1. With �
increasing from 0 to 1.0t one sees a systematic four-step
evolution of �CH and �SH versus �; there are three critical
�c’s at which both �SH and �CH exhibit jumps.

When � increases from 0 to �c1�0.44t, the lowest two
Landau subbands approach each other, then merge together
and form a pseudogap at �c1 �Fig. 1�e��; �SH changes con-
tinuously from −1e /8� to larger negative values �Fig. 1�a��,
while �CH= +1e2 /h nearly stays unchanged �Fig. 1�b��. Here
for a small lattice size �L=32�, �SH and �CH both present
divergence when � approaches �c1. With the lattice size in-
creased �L=64−512�, the divergence is weakened accord-
ingly; for L=2048, �SH approaches a finite value −4.30e /8�
at �c1, and �CH remains as +1e2 /h for 0��
�c1. In the
following, we focus on the data obtained with L=2048.

Increasing � across each �c, �SH and �CH both exhibit
sharp jumps: �SH jumps from −4.30 to +4.87 �in units of
e /8�� at �c1, from +8.71 to +6.32 at �c2�0.56t, and
from +1.49 to −3.57 at �c3�0.71t; �CH changes as
+1→−3→ +5→ +1 �in units of e2 /h�. In intervals away
from �c’s, �SH varies continuously, while �CH remains un-
changed. The corresponding DOS �Figs. 1�c�–1�j�� also
points out that the lowest two Landau subbands approach,
merge together and form a pseudogap at each �c, and then
separate for three times.

Mainly, such a four-step evolution of the SHC of TBE is
distinct from the resonant SHE of 2DEG predicted by Shen
et al.11 in four aspects: in 2DEG, two Landau levels cross
each other at the Fermi level only once and produce one �c,
while for TBE the two Landau subbands touch successively
three times and result in three �c’s; at a �c, the SHC of 2DEG
diverges at T=0, while the SHC of TBE converges to finite
values in the thermodynamic limit �L→�� at T=0; the SHC
of 2DEG does not change its sign, while the SHC of TBE
changes its sign at �c1 and �c3; furthermore, the CHC of
2DEG is unaffected when tuning �, but the CHC of TBE
presents three successive quantum jumps.

IV. CASES WITH WEAKER MAGNETIC FIELDS

The above four-step evolutions have also been verified by
further numerical calculations of the cases with N=4−16,
hZ=0.05t−0.4t, and various 
’s �with odd number of totally
filled Landau subbands�, as illustrated by four examples in
Fig. 2. For N=4, hZ=0.2t, and 
=1 /8 �Fig. 2�a��, �SH shows
behaviors similar to that in Fig. 1�a� while with smaller �c’s
and narrower transition regions �i.e., smaller �c3−�c1�; for
N=6 and N=8 �Figs. 2�b�–2�d��, the transition regions are
narrower than the case with N=4. Meanwhile, the quantized
CHC also exhibits three jumps by −Ne2 /h, +2Ne2 /h, and
−Ne2 /h.

In brief, the larger the N’s, the significantly narrower the
transition regions ���c1����c3�� are. However, the positive
values in the transition regions are much larger, and the total
weights of positive part of �SH �i.e., the integral from �c1 to
�c3� possessing the same order of magnitude are, respec-
tively, 0.96, 1.69, 0.99, and 1.12 in the four cases of Fig. 2.
�Note that the weight is 1.22 for the case in Fig. 1�a�.� In the
limit of large N, namely, when the lattice effect becomes
negligible, the intermediate two steps of the four-step evolu-
tion will not be observable due to their negligible width of
transition regions; three critical �c’s are merged into only
one; the resulting SHC exhibits a divergence at the only �c

FIG. 1. �Color online� The case with N=4 and hZ=0.4t. �a� The
spin Hall conductance �SH versus the Rashba SOC parameter � for
electron filling 
= 1

8 and various lattice sizes. �b� The charge-Hall
conductance �CH versus � in the cases of �a�. ��c�–�j�� The DOS for
some �’s in �a�. The Chern numbers of subbands are also shown.
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and is a reminiscence of the resonant SHE of 2DEG;11 since
the negligible width of transition region and the CHCs are
the same at both sides of the only �c, such a behavior also
coincides well with the resonant SHE of 2DEG in which
tuning � across a �c does not change the CHC.11

V. CASES WITH p ÕN FLUX QUANTUM PER PLAQUETTE

An interesting generalization is to consider the cases with
�=2��p /N� �p and N are coprime integers�, namely, p /N
flux quantum per square plaquette �there are still 2N Landau
subbands�. For the cases with p�1 of TBE on a square
lattice, based on a Diophantine equation,17 a pattern of sub-
band structure has been found by Yang and Bhatt:18 the sub-
bands away from the band center form groups with p sub-
bands each, and the total Chern number of each group is +1
�although the Chern number within each group oscillates be-
tween positive and negative values depending sensitively on
the specific values of p and N�.

For the Rashba SOC �=0 and given a sufficient large
Zeeman splitting hZ, the lowest several Landau subbands are
all occupied with spin-up electrons and well separated from
the higher Landau subbands of spin-down electrons. Now
tuning � from 0 to large values, we have also found four-step
evolutions of the SHC in various cases with p=3 or 5, as
shown in Fig. 3.

However, there are two kinds of four-step evolutions now.
For the cases with electron filling 
=mp / �2N� and m is an
integer �Figs. 3�b�, 3�d�, and 3�f��, every evolution step of
SHC is very similar to the simple cases with p=1, except for
a fine structure of a very narrow dip between the second and
third evolution steps. Moreover for larger N, the additional
dip structure becomes narrower and shallower. For the cases
with electron filling 
=q / �2N��mp / �2N� and q is also an

integer �Figs. 3�a�, 3�c�, and 3�e��, �CH and �SH of some
evolution steps have opposite signs compared to the cases
with p=1.

We should note the energy gaps of subbands within a
group �group

intra , which is much smaller than the energy gaps
between two neighboring groups, �group

inter . Taking the case of
p=3 and N=23 �at hZ=0.1t and �=0�, �group

intra �0.002t for the
first spin-up group �or the first spin-down group�,
�group

intra �0.01t for the second spin-up or spin-down group,
and �group

intra �0.03t for the third spin-up or spin-down group,
while �group

inter �1.3t between the first spin-up group and the
second one, �group

inter �0.9t between the second spin-up group
and the third one, and the energy gap �group

inter between a
Zeeman-splitted spin-up group and a spin-down one is of the
order of 2hZ=0.2t. A weak disorder of the magnitude of
�group

intra will merge this group �consisting of p subbands and a
total Chern number +1� which forms a big subband carrying
a single Chern number +1.18 As for the second kind of cases
with 
=q / �2N��mp / �2N�, such a weak disorder will make
the Fermi energy lie in this subband �hence render the system
metallic�, and there should be no four-step evolution any-
more �since the four-step evolution requires the Fermi energy
to lie in a well-defined energy gap when �=0�.

In contrast, since �group
inter ��group

intra , the first kind of cases
with 
=mp / �2N�, compared to the second one, requires less

FIG. 2. �Color online� �SH versus the Rashba SOC parameter �
in various cases. �CH �in units of e2 /h� of each evolution step is
also shown.

FIG. 3. �Color online� �SH versus � for various cases with
�=2��p /N�: �a� p=3, N=8, and 
=1 /16; �b� p=3, N=10, and

=3 /20; �c� p=5, N=17, and 
=3 /34; �d� p=3, N=13, and

=3 /26; �e� p=5, N=19, and 
=3 /38; and �f� p=5, N=21, and

=5 /42. �CH �in units of e2 /h� of each evolution step is also
shown.
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stringent experimental conditions. Moreover to observe the
additional fine structure �namely, a narrow and shallow dip
which is fragile to disorder�, it also requires lower tempera-
ture and cleaner sample. Therefore, we believe that the four-
step evolution is the major lattice effect, represents the major
difference compared to 2DEG, and should be observed first
under less stringent experimental conditions compared to the
fine structures.

VI. EDGE STATES IN A CYLINDRICAL SYSTEM
WITH N=4

An alternative way to reveal the distinctions among four
evolution steps is to calculate the edge states of the system
on a cylinder. These edge states reflect the topological char-
acter of the corresponding bulk state.19,20 Just recently, spin-
filtered edge states have been considered for a graphene cyl-
inder with an intrinsic SOC �Ref. 15� �in a two-component
Haldane model21� or Zeeman splitting,22 a quantum SHE
arising from helical edge states has been proposed and ex-
perimentally verified in HgTe quantum wells,23 and edge
states have also been employed to characterize topological
band insulators and chiral spin liquids.24 Now as an illustra-
tion, we take a cylinder of square lattice of the size
128�� with N=4 �i.e., the flux strength �= 1

4 �2�� and
apply open boundary condition �OBC� in the x direction and
PBC in the y direction.

Chern numbers of bulk Landau subbands are intimately
related to the winding numbers of the corresponding edge
states.20 For �c1
�
�c2, there is one edge state winding
three times from the upper subband to the lower one then
back to the upper one �a thick �red� line in Fig. 4�b�� which

corresponds to C1=−3 �a Chern number of −3 of the lower
subband�. For �c2
�
�c3, there is one edge state winding
five times from the lower subband to the upper one then back
to the lower one �Fig. 4�d�� which corresponds to C1= +5.
While for 0
�
�c1 or �c3
�
1.0t �not shown in Fig. 4�,
there is another edge state winding only once from the lower
subband to the upper one then back to the lower one which
corresponds to C1= +1.

The continuum spectrum of this cylinder also gives fur-
ther descriptions about the jumps of the bulk CHC. Increas-
ing � across �c1 �Fig. 4�a�� or �c3 �Fig. 4�e��, the lowest two
subbands touch at four points simultaneously in k space and
a Chern number of −4 is transferred from the upper subband
to the lower one; while across �c2 �Fig. 4�c��, the lowest two
subbands touch at eight points simultaneously in k space and
a Chern number of +8 is transferred between them. Such a
correspondence between transferred Chern numbers and
touching points in k space has also been verified for N=5
−8. We remark that similar behaviors about the quantized
jumps of the CHC have been discussed through a Diophan-
tine equation of the next-nearest-neighbor TBE model25 and
numerical calculations of TBE modulated by a staggered
magnetic flux.26

In addition, the spin polarization carried by the edge states
can be computed explicitly as Pmk

z �i�=� /2�mk�ĉi
†�zĉi�mk�,

with i as the lattice site index in the x direction.16 In Fig. 5,
we plot the spin polarization Pz of some edge states of the
above cylindrical system. If � takes a value far away from
�c’s, Pz takes prominently large values near the left or the
right edge and is almost zero in the intermediate region
�Figs. 5�a�, 5�c�, and 5�f�–5�h��; but if � takes a value close
to �c’s, Pz fluctuates strongly between two edges �Figs. 5�b�,
5�d�, and 5�e��. Note that for a fixed ky, the dominantly posi-
tive peak of Pz moves to another edge when � varies from
0.4t to 0.5t. Moreover for edge states of �=0.8t �Fig. 5�h��,
Pz takes prominently negative values near edges.

VII. PRESENCE OF DISORDER

We add a term �iwiĉi
†ĉi �Ref. 9� into the Hamiltonian �Eq.

�1�� to account for the effects of nonmagnetic disorder, with
wi being a random potential uniformly distributed between
�−W /2,W /2�. For N=4, the adopted 100 random-potential
configurations are of the size 8�8 �such a superunit cell is
commensurate with the magnetic unit cell in the absence of
disorder�, and the total lattice is of the size 32�32. It can be
seen from Fig. 6 that weak disorder �W�0.5t� does not
smear out the overall four-step evolution of the SHC. For
stronger disorder �W=2.0t�, the SHC does not show reso-
nance anymore near �c1 or �c3 and takes positive values in
an enlarged interval while the peak is diminished into a
hump.

In order to check the effect of finite system size on the
evolution of the SHC against disorder strength W, we adopt
four series of random-potential configurations with, respec-
tively, the sizes 4�4 �1000 configurations�, 8�8 �100 con-
figurations�, 12�12 �20 configurations�, and 16�16 �10
configurations�. Moreover from the example with �=0.5t
shown in the inset of Fig. 6, we can see that the evolutions of

FIG. 4. �Color online� Lowest two subbands and intermediate
edge states �shown as thick �red� lines� of a cylinder of the size
128�� �OBC in the x direction and PBC in the y direction� with
N=4, hZ=0.4, and various �’s.
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�SH versus W coincide well for three larger sizes and hence
are scarcely affected by the finite-size effect.

VIII. SUMMARY AND DISCUSSION

An intriguing evolution of magnetotransport property has
been demonstrated by TBE with Rashba SOC in a magnetic
field: �i� with the flux strength �=2� /N and the Zeeman
splitting fixed, when increasing the Rashba SOC � from 0,
four-step evolutions of the SHC and CHC have been ob-
served; �ii� at three �c’s, the SHC shows size-dependent reso-
nances and jumps and changes its sign at �c1 and �c3; �iii�
meanwhile, the quantized CHC shows three successive
jumps by −Ne2 /h, +2Ne2 /h, and −Ne2 /h; �iv� for smaller
�’s, the total weights of positive part of SHC have the same
order of magnitude although the transition regions are sig-
nificantly narrower; �v� edge states of a cylindrical system
reflect such bulk properties; �vi� this four-step evolution is
robust against weak disorder; and �vii� for the flux strength
�=2��p /N� �p�1 and N are coprime integers�, there are
possible fine structures in addition to the major four-step
evolution.

As emphasized in the end of Sec. III, this four-step evo-
lution of SHC is distinct from the resonant SHE of 2DEG.11

To understand why such differences occur, we should note
the following lattice effects: in the presence of a strong un-
derlying lattice potential, a conventional Landau level �espe-
cially a higher Landau level� of 2DEG will acquire a finite
width and expand into a Landau subband;27,28 the Chern
number of each Landau subband can take integer values
other than +1 �Ref. 17� and change its value discretely25,26

�by multiples of N� when two subbands cross each other and
change their topological characters �e.g., winding numbers,
Berry phases, or k-space curvatures�. In contrast, a Landau
level of 2DEG always has a Chern number of +1 if it is well
separated from the others. One necessary experimental con-
dition to observe such an evolution is similar to the require-
ment to observe the famous Hofstadter butterfly,28 namely,
the magnetic field should be strong enough or the lattice
constant should be large enough �and the resulting N is not
very large�. To observe the step character unambiguously
under an accessible uniform magnetic field with N�100, we

FIG. 5. �Color online� Spin polarization Pz �in units of � /2� versus the lattice site index in the x direction for the edge states of the
cylindrical system in Fig. 4.

FIG. 6. �Color online� �SH versus � in the case with N=4,
hZ=0.4t, and various disorder strength W’s �100 random-potential
configurations of the size 8�8�. The inset shows the evolution of
�SH versus W at �=0.5t for various sizes of random-potential
configurations.
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estimate that both the strength of disorder W and the tem-
perature kBT should not exceed 4t

N � 4t
100 �where 4t is half of

the original bandwidth�. Moreover since the phenomenon is
attributed to the subband crossing induced the competition
between the SOC and the Zeeman splitting, the SOC strength
� is required to be tunable and at the same energy scale of
the Zeeman splitting energy hZ. Moreover to observe the
possible additional fine structure of the cases with the flux
strength �=2��p /N� �p�1 and N are coprime integers�, it
requires much lower temperature and cleaner sample. Hence
we believe the four-step evolution is the major lattice effect,
represents the major difference compared to 2DEG, and
should be observed first under less stringent experimental
conditions compared to the fine structures.

Such an interesting four-step evolution of SHC is ex-
pected to occur in 2D electron systems with a strong lattice

potential, a mechanism of SOC or SO scattering, and an
external magnetic field. Some candidate experimental sys-
tems are metallic conductors such as Al films and Pt strips,6

ultracold fermions in an optical lattice with an effective
SOC,14 and graphene with an intrinsic or Rashba SOC.15,16

Moreover spin polarizations of edge states should be observ-
able in a four-terminal experimental setup.15,22
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